A global code invariant under the Higman—Sims group

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group code structures on affine-invariant codes

A group code structure of a linear code is a description of the code as one-sided or two-sided ideal of a group algebra of a finite group. In these realizations, the group algebra is identified with the ambient space, and the group elements with the coordinates of the ambient space. It is well known that every affine-invariant code of length pm, with p prime, can be realized as an ideal of the ...

متن کامل

Equivalence Relations Invariant under Group Actions

We study, in an abstract context, equivalence relations which are invariant under group actions. More precisely, we fix a transformation group, and we study the orbital equivalence relations (i.e. orbit equivalence relations of normal subgroups) and a wider class of weakly orbital equivalence relations. For these sorts of relations we show (under some additional assumptions) that if each class ...

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

On Codes that are Invariant under the Affine Group

Let k[V ] be the space of functions from a finite vector space into the algebraically closure of its field of scalars. This paper describes the lattice of subspaces of k[V ] which are invariant under the affine group AGL(V ). The description provides a simple method for finding the submodule generated by any set of functions given as polynomials in the standard coordinates.

متن کامل

Linear Extensions of Orders Invariant under Abelian Group Actions

Let G be an abelian group acting on a set X, and suppose that no element of G has any finite orbit of size greater than one. We show that every partial order on X invariant under G extends to a linear order on X also invariant under G. We then discuss extensions to linear preorders when the orbit condition is not met, and show that for any abelian group acting on a set X, there is a G-invariant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1982

ISSN: 0021-8693

DOI: 10.1016/0021-8693(82)90073-4